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Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. Let ABC be a right-angled triangle with 6 B = 90◦. A circle through B and the
midpoint K of hypotenuse AC intersects the sides AB and BC at points M and N

respectively. Suppose that AC = 2MN . Prove that M and N are the midpoints
of the sides AB and BC respectively. (4 points)

2. Determine all positive integers n such that the numbers 1, 2, . . . , 2n can be divided
into pairs so that the product of sums of the numbers in each pair is a perfect
square. (4 points)

3. A grid rectangle of the size 7 × 14 is divided along the grid lines into the squares
of the size 2 × 2 consisting of 4 squares and corners consisting of 3 squares. Is it
possible that the number of squares of the size 2× 2 is

(a) equal to the number of corners? (1 point)

(b) greater than the number of corners? (3 points)

4. Nastya has 5 coins, which look identical, three of which are real and of the same
weight, and the other two are fake. Of the fakes, one weighs more than a real
coin, and the other weighs less than a real coin by the same amount. Nastya can
ask an expert to perform three weighings of her choice on a simple balance. Then
the expert reports the results to Nastya. Note that the results of all weighings are
reported to Nastya after the third weighing. Could Nastya choose the weighings
so that she would be able to determine both fake coins and state which of them is
heavier for sure? A simple balance shows which of two sides is heavier/higher or if
they are balanced. (5 points)

5. A nine-digit integer is called beautiful if all of its digits are different. Prove
that there exist at least 1000 beautiful numbers, each of which is divisible by
37. (5 points)
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1. Let Γ be the circle through B and the midpoint K of hypotenuse AC. Since Γ
passes through M and N , and 90◦ = 6 ABC = 6 MBN , MN is a diameter of Γ.

Since K is the midpoint of hypotenuse AC, K is the circumcentre of triangle ABC.
Thus, we have

BK =
1

2
AC = MN,

so that BK is also a diameter. Therefore, 6 BMK = 90◦, and hence KM is parallel
to BC. Since K is the midpoint of AC, it follows that KM is a middle line of
triangle ABC, so that M is the midpoint of AB. Similarly, KN is also a middle
line of triangle ABC, and N is the midpoint of BC.
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2. Let S be the chosen partition of {1, 2, . . . , 2n} into pairs, and P be its corresponding
product of pair-sums.

Solution 1. There is a partition S for which P is a perfect square, for any n > 1.

For n = 1, there is only one choice for S, namely {{1, 2}}, and hence necessarily
P = 1 + 2 = 3, which is not a perfect square.

For even n, we have n = 2k for some integer k ≥ 1, and we can choose

S = {{1, 2n}, {2, 2n− 1}, . . . , {n, n + 1}}, giving

P = (1 + 2n)(2 + (2n− 1)) · · · (n + (n + 1)) = (2n + 1)n = ((2n + 1)k)2,

a perfect square.

For n = 3, we can choose S = {{1, 5} {2, 4}, {3, 6}}, giving P = 6 · 6 · 9 = 62 · 32,
a perfect square.

For odd n > 3, we have n = 2k + 1 for some integer k > 1. The key idea is that
n− 3 is even, so that after partitioning {1, 2, . . . , 6} into pairs as we did for n = 3,
the remaining n − 3 numbers can be partitioned into pairs in the way we did for
even n, i.e. we can choose S and hence P as

S = {{1, 5}, {2, 4}, {3, 6} {7, 2n}, {8, 2n− 1} {n + 3, n + 4}},
P = 6 · 6 · 9 · (7 + 2n)(8 + (2n− 1)) · · · ((n + 3) + (n + 4))

= 62 · 32 · (2n + 7)n−3 = (18(2n + 7)k−1)2,

where P is again a perfect square.



Solution 2. There is a partition S for which P is a perfect square, for any n > 1.

The key idea is that any four consecutive integers a, a + 1, a + 2, a + 3 can be
partitioned into the pairs {a, a + 3}, {a + 1, a + 2} whose contribution to P is a
square, namely

(a + (a + 3))((a + 1) + (a + 2)) = (2a + 3)2.

Thus, if 2n is divisible by 4, i.e. n is even, we first partition {1, 2, . . . , 2n} into
consecutive sets of 4, and then partition the sets of four as pairs, leading to P as
a product of squares.

If 2n = 2, i.e. n = 1, as we saw in Solution 1., P = 3 is unique and not a square.

This leaves 2n is not divisible by 4 having remainder 2, for which 2n ≥ 6. After
setting aside the first six numbers, what remains can first be partitioned into
consecutive sets of 4. The first 6 can be partitioned into pairs as per Solution 1.,
giving a contribution of 182 to P , and by the strategy above each set of 4 can be
partitioned into pairs that give a contribution to P that is a square.

Thus, for all n > 1, there is a partition S for which P is a product of squares, so
that as a consequence P is a perfect square.

Note. For n = 2 and n = 3 the partitions S that give a square P are unique. For
any other n they are not unique.

3. Let s and c be the numbers of 2× 2 squares and corners, respectively.

(a) Yes, it is possible to partition the 7×14 grid into equal numbers of 2×2 squares
and corners. We note that orientation is irrelevant and for convenience have
shown a 7 × 2 grid, with two rows and seven columns, with 2 squares and 2
corners.

With 7 such 7× 2 grids we have c = s = 14, as required.

(b) Solution 1. No, s > c is not possible. We will show c is at least 14. Orienting
as in (a), we have 14 rows and 7 columns. Since the number of cells in each
row is 7, which is odd and a 2 × 2 square only contributes an even number
of cells to a row, we must have a corner in each row. However, if a corner
contributes one cell to one row, then to an adjacent row it contributes two
cells. Thus we need at least as many corners as rows, i.e. we need 14 corners,
but then at most s = (7× 14− 3× 14)/4 = 14 6> c (a contradiction). So s > c
is not possible.

Solution 2. No, s > c is not possible. Note that the total number of cells
of the grid rectangle is 7 × 14 = 98. Orienting as in (a), we have 14 rows
and 7 columns. Colour the columns black and white alternately, with the first
column coloured black. Then 4 columns comprising a total of 56 cells are black
and 3 columns comprising 42 cells are white. Thus there are 14 more black
cells than white. A 2 × 2 square must cover 2 black cells and 2 white cells,



whereas a corner must cover 2 cells of one colour and one of the other colour.
Thus to make up the difference there must be at least 14 corners each covering
an extra black cell. But then at most s = (7 × 14 − 3 × 14)/4 = 14 6> c (a
contradiction). So s > c is not possible.

4. Solution 1. Yes, Nastya can choose the weighings so that she can assuredly
determine both fake coins and state which of them is heavier. Denote the five
coins by a, b, c, d and e. Nastya can achieve the desired outcome by demanding
the following three weighings:

(1) a vs b

(2) c vs d

(3) a, b vs c, d.

Noting that having omitted e from the weighings, at least one of a, b, c, d is fake,
and so at least one of (1) and (2) is unbalanced. By relabelling the coins and
weighings (1) and (2), if necessary, we need only consider the following 4 cases
(where we identify a coin with its weight).

Case 1: Both (1) and (2) are unbalanced; without loss of generality:

a > b, c > d, a + b > c + d.

Since (1) and (2) are unbalanced there is a fake coin in each weighing.
So e is real. Also, (3) shows the heavy fake is one of a and b, and
so (1) shows that a is the heavy fake. Similarly, (3) shows the light
fake is one of c and d, and so (2) shows the light fake is d.

This leaves cases where only one of (1) and (2) is unbalanced; with-
out loss of generality (2) is unbalanced with c > d. Consequently,
with (1) balanced, a and b are real. Then we must consider all
possibilities for (3):

Case 2: a = b, c > d, a + b = c + d. Since c + d balances a + b (with a and b
both real), one of c and d is a heavy fake coin and the other a light
fake coin. Hence (2) shows that c is the heavy fake coin, and d the
light fake coin.

Case 3: a = b, c > d, a + b > c + d. Since a and b both real, and (3) is
unbalanced only one of c and d is fake, and since a + b is the heavy
side, one of c and d is a light fake. Hence, since (2) has a real coin
on one side, the light fake must be d and the heavy fake is e.

Case 4: a = b, c > d, a + b < c + d. Since a and b both real, and (3) is
unbalanced only one of c and d is fake, and since a + b is the light
side, one of c and d is a heavy fake. Hence, since (2) has a real coin
on one side, the heavy fake must be c and the light fake is e.

Thus, both fakes can be identified with the 3 prescribed weighings.

Solution 2. Yes, Nastya can choose the weighings so that she can assuredly
determine both fake coins and state which of them is heavier. Denote the five



coins by a, b, c, d and e. Nastya can achieve the desired outcome by demanding
the following three weighings:

(1) a, b vs c, d

(2) a, c vs b, d

(3) a, d vs b, c.

We note that having omitted e from the weighings, there are
(
4
2

)
= 6 possible ways

of choosing a pair from a, b, c, d. These make up the pairs on the sides of the
weighings. We have the following cases.

Case 1: e is fake. Then only one of a, b, c, d is fake, and causes each of the
weighings to be unbalanced.
If the light sides of (1), (2) and (3) have a common element, then
that common element is the light fake and e is the heavy fake.
If the heavy sides of (1), (2) and (3) have a common element, then
that common element is the heavy fake and e is the light fake.

Case 2: The fake coins are among a, b, c, d. Then the fake coins are together
on one side in a unique weighing.
Without loss of generality, suppose (1) is balanced. Then either a
and b are fakes or c and d are. The common coin on the light sides
of (2) and (3) is the light fake coin, and the common coin on the
heavy side of (2) and (3) is the fake heavy coin.

Alternative way of distinguishing the cases: For each of the coins a, b, c, d, Nastya
determines how often the coin was on the heavy side, e.g. 2220 indicates, in order,
that each of a, b, and c were on the heavy side twice, and d was never on the heavy
side. The coin e can be a a heavy fake coin, light fake coin or a real coin. The
cases are distinguished by:

e is a heavy fake coin if and only if the coding of the three weighings is
a permutation of 2220.
e is a light fake coin if and only if the coding of the three weighings is a
permutation of 3111.
e is a real coin if and only if the coding of the three weighings is a
permutation of 2110.

In the first case 2220, the light fake is the coin corresponding to 0. In the case 3111,
the heavy fake is the coin corresponding to 3. Finally, in the case 2110, the heavy
fake is the coin corresponding to 2, and the light fake is the coin corresponding to
0.

Thus, both fakes can be identified with the 3 prescribed weighings.

Note. There are no other ways for Nastya to prescribe the weighings to identify
two fake coins than the weighings described above.

5. Solution 1. Any nine-digit integer N can be represented in the following way

N = 106A + 103B + C = 999 · (1001A + B) + (A + B + C),



where A, B and C are the numbers formed by the first three digits of N , the middle
three digits of N , and the last three digits of N , respectively.

Since 1 + 2 + · · ·+ 9 = 45, one can partition the digits 1, 2, . . . , 9 into three triples,
having a common sum of 15; for example, (1, 5, 9), (2, 6, 7) and (3, 4, 8). If the
three digits from one triple are placed in the leftmost positions of the numbers A,
B and C, the digits of another triple are placed in the middle positions of A, B
and C, and the digits of the third triple are placed in the rightmost positions of
A, B and C, then A + B + C = 15 · 111 = 45 · 37. Since 37 also divides 999, a
beautiful number with such a configuration for A, B and C will be divisible by 37.
Since we have six ways to arrange the digits of a triple in the designated position
of A, B and C, for each of three triples, and also there are six ways to arrange the
triples among the digit positions, we have at least 64 = 1296 beautiful numbers,
each of which is divisible by 37.

Solution 2, by William Steinberg. Observe that 3 · 37 = 11 and 33 · 37 = 999,
so that

102 ≡ −11 (mod 37) and 103 ≡ 1 (mod 37).

Let the decimal representation of a beautiful number be a8a7 . . . a1a0. Then

a8a7 . . . a1a0 =
8∑

k=0

ak × 10k

≡ (a0 + a3 + a6) · 1
+ (a1 + a4 + a7) · 10

+ (a2 + a5 + a8) · (−11) (mod 37)

Observe that
1 + 10 + (−10) ≡ 0 (mod 37).

So, if it is possible to have

a0 + a3 + a6 = a1 + a4 + a7 = a2 + a5 + a8

= S, say,

then a8a7 . . . a1a0 ≡ 0 (mod 37).

Since 1 + 2 + · · ·+ 9 = 45, indeed we can have S = 15. Let

D = {{a0, a3, a6}, {a1, a4, a7}, {a2, a5, a8}}
T = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

where D are the digit triples whose sum we want to be 15, and T is a partition
of {1, 2, . . . , 9} into triples whose sum is 15. Then the digit triples in T can be
assigned to the three triples in D in 3! = 6 ways, and after such an assignment the
digits of each T -triple can be assigned to the digits of a D-triple in 3! = 6 ways.
So there are at least 64 = 1296 > 1000 beautiful numbers that are divisible by 37.

Remark. There are many ways of partitioning {1, 2, . . . , 9} into triples whose
sum is 15 (so-called magic square triples). Solutions 1. and 2. show two ways. And
there are also beautiful numbers with 0 as one of their digits that are divisible by
37. A computer search shows the bound can be relaxed from 1000 to over 89 000.


